{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "imports", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from pyprojroot import here" ] }, { "cell_type": "code", "execution_count": null, "id": "load", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv(here() / 'data/base/data.csv')" ] }, { "cell_type": "code", "execution_count": null, "id": "plot", "metadata": {}, "outputs": [], "source": [ "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))\n", "\n", "# Histogram of fidelity\n", "ax1.hist(data['Entanglement Fidelity'], bins=15, color='coral', alpha=0.7, edgecolor='black')\n", "ax1.set_xlabel('Entanglement Fidelity', fontsize=12)\n", "ax1.set_ylabel('Frequency', fontsize=12)\n", "ax1.set_title('Distribution of Entanglement Fidelity', fontsize=13)\n", "ax1.grid(True, alpha=0.3)\n", "\n", "# Category pie chart\n", "category_counts = data['Fidelity Category'].value_counts()\n", "colors = ['#2ecc71', '#3498db', '#f39c12', '#e74c3c']\n", "ax2.pie(category_counts.values, labels=category_counts.index, autopct='%1.1f%%',\n", " colors=colors, startangle=90)\n", "ax2.set_title('Fidelity Categories', fontsize=13)\n", "\n", "plt.tight_layout()\n", "plt.savefig(here() / 'output/plots/fidelity_dist.png', dpi=300, bbox_inches='tight')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 5 }